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Summary. The results of various quantum chemical calculations, the Hartree- 
Fock (HF) method, the Moller-Plesset perturbation theory (MP2), and the 
Hartree-Fock-Slater (HFS) method are compared. Atomic charges, dipole 
moments, topological properties of the electron density distribution and polariz- 
abilities, and first hyperpolarizabilities are calculated. Atomic charges obtained 
with the HFS method are found to be very close to those calculated with the 
MP2 method, from which we conlcude that the HFS method describes to some 
extent electron correlation effects. Performing an MP2 calculation after an HF 
calculation improves the molecular dipole moments considerably, yielding values 
close to the experimental ones. HFS calculations are computationally less 
demanding than MP2 and yield comparable results for the electron density 
distributions, dipole moments and polarizabilities. 

Key words: Electron correlation - Atomic moments - Electron density distribu- 
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I Introduction 

The results obtained with different quantum chemical methods, Hartree-Fock 
(HF), Moller-Plesset perturbation theory (MP2), and Hartree-Fock Slater 
(HFS), will be compared. The molecules we use for this study are formaldehyde, 
water, nitrate ion, and urea. To obtain a good overall picture, the methods will 
be evaluated using different approaches: electron density maps, atomic moments, 
topological analysis, and polarizabilities. 

We have calculated electron density maps and investigated the influence of 
the basis set size. Quantitative comparisons have been carried out by evaluating 
atomic charges and dipole moments. The Mulliken, L6wdin, Hirshfeld stock- 
holder, and Bader charge partitioning methods are employed. The topology of 
the electron density distribution is very important in Bader's theory of atoms in 
molecules. Topological analyses have been performed and the properties at the 
critical points of the electron density distributions will be discussed. 

Related to the electron density distribution are the dipole moment, dipole 
polarizability, and first dipole hyperpolarizability. These properties have been 
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calculated for formaldehyde using extensive basis sets and the results of the 
different types of calculations will be compared mutually and with experimen- 
tally obtained values. 

It is generally assumed that some electron correlation effects are taken into 
account in density functional methods. Geometries and spectroscopic properties 
are often predicted more accurately using density functional methods, than 
using HF. It is well known, for example, that H2 dissociates correctly into 
neutral atoms using the HFS (or Xe) method, while electron correlation correc- 
tions must be applied to the HF method to obtain the same result. Cook and 
Karplus [1] explained the different behavior of the HFS and HF method on 
dissociation of molecules. They showed that in molecules, within the single 
determinant HF approximation, the presence of state- and geometry-dependent 
ionic errors, relative to the correct HF description of the individual free atoms 
constituting the molecule, are responsible for most of the error in the HF 
potential surface. This is specially true at large bond distances. These errors are 
not present in the density and will therefore also be absent in density functional 
methods. 

We will compare HFS and MP2 results and pay special attention to the idea 
of electron correlation effects in the electron density distribution obtained by 
both methods. 

2 Computational methods 

The three quantum chemical methods we used for calculating the propeties of the 
molecules are the restricted Hartree-Fock (HF) method, the Hartree-Fock- 
Slater (HFS) method (see Sect. 2.1), and Moller-Plesset perturbation theory 
(MP2) (see Sect. 2.2). 

2.1 The Har t ree -  F o c k -  Slater method 

The Density Functional Theory [2] (DFT) as formulated by Hohenberg and 
Kohn [3] states that the ground state electron density distribution if(r) fully 
characterizes all properties of a system. Although a unique way to derive the 
ground state energy, wavefunction and related properties, is not known, they can 
in principle all be determined from knowledge of ~(r). In this method, as in the 
HF method, the N-electron problem is reduced to a set of one-electron equations 
describing the behavior of one particle in a mean potential field. This field is in 
the DFT a functional of 0(r). 

In the Hohenberg-Kohn-Sham formalism [3, 4], the calculation for spin 
restricted states thus consists of self-consistently solving: 

where 

[ - ½V 2 + V~er(r)]~o i (r) = gigp, (r) (1) 

Veer(r) = ~ Ir - -Rnl  + O [r - r I + Vxc(r) (2) 

(i.e. the sum of the nuclear potential acting on the electrons, the Coulomb 
potential produced by all the electrons and the exchange-correlation potential). 
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The ground state electron density distribution 0(r) is given by: 

O(r) -- E n, ]~b~ (r)12 (3) 
i 

in which ni is the occupation number of the orbital ~b~. The exchange-correlation 
potential Vxc(r) is in the local density or HFS version approximated by: 

Vxc(r) = --3c~ ~ o ( r )  (4) 

where e is an adjustable parameter, taken to be 0.7 in the present work. 
In the Xe-LCAO-DVM method as developed by Baerends, Ellis, and Ros 

[5, 6], the orbitals qS; are expanded in a finite set of Cartesian Slater-type orbitals 
(STO) centered on the atoms: Linear Combination of Atomic Orbitals (LCAO) 
method. In the Har t ree-Fock method a number of two-electron integrals 
proportional to N 4 have to be calculated, where N z is the number of basis 
functions. To avoid the calculation of this large number of integrals, the electron 
density distribution o(r) is expanded in a finite set of STO's f .  centered on the 
nuclei: 

Q(r) ~- O(r) = ~ air(r). (5) 
i 

The coefficients a~ are determined by minimizing the error function: 

D = t" [o(r) - 0(r)]2 dr, (6) 

with a constraint on the total number of electrons N: 

r e(r) dr = N. (7) 

The fit functions f~ are generated by making products of the atomic basis set 
functions. The fit density O(r) is used to calculate both the Coulomb and 
exchange-correlation potential. The matrix elements in the secular equation are 
evaluated numerically according to the Discrete Variational Method (DVM) as 
introduced by Ellis and Painter [7, 8]. The numerical integrations have been 
performed by using Gauss-Legendre quadrature [9]. 

2.2 Moller-Plesset perturbation theory 

Electron correlation [10-13] is defined as the difference between the exact 
solution of the total non-relativistic Hamiltonian of a system, within the Born 
Oppenheimer approximation, and the approximated solution in the HF limit. It 
reflects the fact that the Hart ree-Fock Hamiltonian contains the average, rather 
than the instantaneous potential, and thus neglects the correlation between the 
motion of the electrons. Apart from this there are also correlation effects related 
to relativistic effects and nuclear motion which will not be considered here. 

The expectation value of a single particle operator, like the charge density 
distribution and the dipole moment, will be constructed in the general case of a 
multideterminental wavefunction. Moller-Plesset perturbation theory [ 14-16] 
uses the HF wavefunction as a starting point and, in the spin unrestricted case 
(UHF). 
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In general all possible substitutions have to be considered but often only the 
terms containing single and double substitutions of the ground state HF wave- 
functions are incorporated in the wavefunction expansion, since for an energy 
calculation only the double substitutions mix with the ground state. Including 
only these terms the wavefunction can be written in general as: 

-= NN(~O -q- Cs~s -+- CD~ID) (8) 

in which CstPs and CD~D represent all terms with single and double substitutions 
respectively, with respect to ~o. The factor NN takes care of the normalization. 
The expectation value of a one-electron operator becomes: 

A = (~, I~[~ ) =  N~,((4,ol~il¢o) + 2Cs(~bol.~[~s) + CD1CDz(IIIDI[.~J~ID1) 

+ ) + (IPS 1 [~]. [ I/]S2 )). (9) 

Using MP perturbation theory it follows that, in terms of the perturbation 
parameter 2, CD is a first-order perturbation coefficient 0(2) while Cs is of 
second-order 0(22). Therefore only the first three terms in Eq. (9) have to be 
kept to obtain the expectation value of the one-electron operator A accurate up 
to second-order in the perturbation theory parameter. For this reason it is not 
necessary to include triple and higher substitutions in the wavefunction, Eq. (8), 
since these will not contribute to the second-order Moller-Plesset perturbation 
theory (MP2), which we are interested in. It is clear from Eq. (9) that single 
substitutions contribute to the expectation value of the dipole moment and 
charge density distribution up to second-order, while they don't contribute to the 
second-order Moller-Plesset calculation of the energy. 

The expectation value of A can be expressed in two terms: one coming from 
the first-order perturbation (double substitutions) and one coming from the 
second-order (single substitutions): 

C~ (Asc F q- ADID2) ~ 2 6  s AAMP2-= AMP2-- AscF 1 + C~ + I + C ~  (A°s)" (10) 

The contribution to the electron correlation is AAMP2, the difference between the 
total value (AMP2) and the HF value (Ascv). 

For explicit expressions of the coefficients Cs and CD we refer to [15, 16]. We 
used the program package GAMESS [17, 18] to calculate the HF wavefunetion 
and perform a MP perturbation calculation to obtain the second-order correc- 
tion to the energy. The program was modified to calculate all the two-electron 
integrals needed, including the terms coming from single substituted wavefunc- 
tions, which don't have to be calculated for the second-order energy correction. 
The two-electron integrals are used in other programs to calculate the coefficients 
Cs and CD. From these coefficients the density matrix is calculated, from which 
the electron density distribution and multipole moments can be obtained. 

2.3 Electron density distributions 

The electron density distributions derived from these methods are named as 
follows: 

&~F(r): Total electron density distribution from a Hartree-Fock (HF) 
calculation. 
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QHFS(r): Same as above for a Hartree-Fock-Slater (Xe) calculation. 

A QH F (r) = euv (r) - - ~  0 at°m(r) : electron deformation (or difference) density 
distribution. The free spherical atom densities have been calcu- 
lated using the same atomic basis set as in the molecular 
calculation. 

AOUFs(r) = Q H F S ( r ) -  £ oat°m(r): electron deformation density distribution. 
All terms have been calculated using the same atomic basis set. 

AQMm(r): Difference between the total MMler-Plesset (MP2) electron 
density distribution and the HF density QHF(r). 

From the calculated wavefunctions Mulliken and L6wdin atomic charges are 
determined, while the partitioning methods of Hirshfeld (Sect. 2.4) and Bader 
(Sect. 2.5) have been applied to the different electron density distributions to 
obtain atomic charges and local atomic dipole moments. For comparing total 
electron density distributions critical points have been determined and the 
molecular properties at these critical points according to Bader's theory of 
"atoms in molecules". 

2.4 Hirshfeld's charge partitioning method 

To obtain quantitative information from the electron density distribution atomic 
charges and multipole moments can be calculated. Since there is no unique way 
to define atomic charges several methods [19] are in use. Very popular from the 
quantum chemical point of view is the Mulliken [20, 21] partitioning method to 
analyze a LCAO-MO-SCF wavefunction. Unfortunately, Mulliken atomic 
charges as well as the L6wdin [22] atomic charges are quite sensitive for the basis 
set used in the calculation. 

The Hirshfeld [23] stockholder partitioning method is closely related to the 
definition of the promolecule, i.e. the sum of the electron density distributions of 
the free spherical atoms constituting the molecule. In this formalism one defines 
for each atom a sharing function: 

Qat°m(r --  Ra) 
W~(r) = , (11) 

2 b  Q~t°m( r --  Rb) 

where •at°m(r - -  Ra) is the spherically averaged free atomic density distribution of 
atom a at position Ra. The sum in the denominator runs over all atoms of the 
molecule. Using this sharing function the net atomic charges qa and dipole 
moments #a are calculated from: 

= - [  Wo(r)e(r) dr + q~ Z,, (12) 
J 

p~ = - - ~  W~(r)~(r)(r, - R~) dr (13) 

with similar terms for higher order moments. (The nuclear charge is denoted by 
Za.) Since no analytic expression is available these terms have to be evaluated 
numerically using Gauss-Legendre quadrature. The advantage of this way of 



396 G.J.M. Velders and D. Feil 

partitioning is that the atomic charges and multipole moments can be derived 
from any charge distribution, obtained by theory or experiment. Using this 
method in quantum chemical calculations, the atomic moments are far less 
sensitive for the basis set used in the calculation than those obtained with the 
methods from Mulliken and L6wdin (see also [24]). 

2.5 Charge analysis according to Bader 

The charge partitioning method discussed before lacks the profound quantum 
chemical basis present in the method proposed by Bader [25]. His method is 
based on the topology of the electron density distribution and defines an atom as 
the union of an attractor, the nucleus, and its associated basin: 

V0(r) • n(r) = 0, (for all points on the surface) (14) 

where n is the vector normal to the surface of the atom. A nucleus acts as an 
attractor of the V0(r) field; all the trajectories in some neighborhood of a 
nucleus, its basin, terminate at the nucleus. The trajectories are lines of steepest 
ascent through the density distribution. A trajectory always stays within the 
basin in which it originates, i.e. Eq. (14) does not allow trajectories to cross the 
atomic surface which is therefore also referred to as a zero flux surface. The 
charge density is characterized by its extrema, or critical points, points at which 
the gradient vanishes, VQ(r) = 0. Whether a critical point in ~(r) is a maximum 
or a minimum is determined by the sign of the curvatures (second derivatives) of 
Q(r). The trace of the Hessian matrix of ~(r), the second derivative matrix, is 
called the Laplacian of 0(r): 

I~2 ~2 ~21 g20(r)= ~x2-k----t-~z2Oy 2 o(r) (15) 

and is invariant to the choice of coordinate system. The principal axes and 
corresponding curvatures at the critical point are obtained as the eigenvectors 
and eigenvalues of the Hessian matrix. The rank of a critical point is denoted by 
co and equals the number of non-zero eigenvalues of 0(r) at the critical point. The 
signature a is the algebraic sum of the signs of the eigenvalues of 0(r) at the 
critical point. A critical point is labelled by the double (co, a) [25, 26]. 

Another way to analyse 0(r) is by looking at the Laplacian of o(r). In regions 
of space where the Laplacian V20(r) < 0 electronic charge is accumulated and 
where V20(r) > 0 electronic charge is depleted, relative to the average of the 
surrounding points in the density. The advantage of such a visual representation 
of 0(r), compared with the deformation density, is that it is uniquely defined, 
without a reference function. When comparing densities of different molecules it 
does not directly yield more information than the intuitively very attractive 
deformation density. 

Another aspect of this theory is that it is possible to characterize atomic 
interactions [26] using o(r) and the Laplacian of 0(r). Atomic interactions fall 
into two broad classes, shared and closed-shell interactions. In the first class the 
interaction results from a sharing of charge density between atoms as in covalent 
and polar bonds. The charge density is contracted towards the region between 
the nuclei and V20(r) at the critical point in the bond is negative, resulting in a 
large negative value for the potential energy in the internuclear region. The total 
charge density at the critical point is relatively large. 
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The characteristics of closed-shell interactions, as found in noble gases, ionic 
bonds and Van der Waals crystals, are opposite to the shared interactions. 
Charge is contracted towards the nuclei resulting in a positive Laplacian and a 
relatively small value of ~(r) at the bond critical point. In these interactions the 
regions of dominant potential energy contributions are separately localized 
within the boundaries of each interacting atom, while for the shared interactions 
a region of low potential energy is contiguous over the basins of the atoms 
participating in the bond. 

Properties of the atoms defined by Eq. (14) can be calculated by performing 
the appropriate integrations [27, 28] over the atomic volumes and surfaces. 
Because of the complicated definition of the sharp boundary of the atom the 
calculation of atomic properties is rather complicated and computationally 
demanding. Interfaces have been written to use the HFS and MP2 wavefunction 
and density matrices as input for the AIMPAC programs. 

2. 6 Electric field calculations 

To study the influence of electric fields on molecules we have used several 
methods [29, 30]. The dipole moment /~ of a molecule in the presence of a 
homogeneous electric field E i, can be represented as a power series expansion in 
terms of the electric field. Using the summation convention we can write: 

#i = ktoi -I- o~ijE j ~- flijk EjEk -}- ]~ ijklEjEk El - t - ' ' "  (16) 

where /~0 is the permanent dipole moment, while the tensors eij, ~Ok, and 7ijk~ 
stand for the dipole polarizability, first dipole hyperpolarizability and second 
dipole hyperpolarizability, respectively. 

2.6.1 The sum over states method: SOS. In this method, which is equivalent to 
the Uncoupled Hartree-Fock approach (UCHF), a Restricted Hartree-Fock 
(RHF) calculation is performed with the unperturbed Hamiltonian. Subse- 
quently the influence of an electric field is calculated using perturbation theory 
[31]. In this method the perturbation ([elr  • E )  is included in the Fock operator. 
The dipole (hyper)polarizability can be calculated from a Taylor series expan- 
sion of the expectation value of the dipole moment using the perturbed canonical 
orbitals. The coefficients can also be obtained from the energy expression using 
the Hellmann-Feynman theorem: The derivative of the energy with respect to 
the electric field equals the expectation value of the dipole moment. The 
expressions of the polarizability coefficients a~j and flijk are given elsewhere 
[29, 30]. 

2.6.2 The f ini te f ie ld  method: FF. Two versions of this method exist. In the one 
the calculations are directed towards the calculation of the dipole moment 
(FF:p), whereas in the other the energy of the molecule is the object of study 
(FF:E). In both methods, RHF calculations are performed in the presence of an 
external electric field. This finite field approach [32, 33] has the advantage over 
the UCHF method that the perturbation of the orbitals, due to the field, is 
automatically incorporated in the Fock operator in a self consistent way. The 
effect of the perturbation of a certain orbital on the other orbitals is not 
accounted for in the SOS method. The FF method is equivalent in the limit of 
zero field to the conceptually much more complicated Coupled Hartree-Fock 
method (CHF). For a comparison between this method and the SOS method see 
also Velders and Feil [29]. 
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2.6.2.1 The finite field method: FF:#. The components of the dipole polarizabil- 
ity tensor c~ij and first hyperpolarizability tensor fliik are obtained by numerical 
differentiation (three point method) of the dipole moment with respect to the 
electric field components for small fields. Using the MP2 instead of the SCF 
dipole moments, electron correlation effects are included in the polarizability 
coefficients. Another way of incorporating electron correlation effects in the 
(hyper)polarizability is by double perturbation theory calculations [34, 35], in 
which two perturbations operators are defined. One represents the electron 
correlation and the other the influence of an external electric field. 

2.6.2.2 The finite field method: FE:E. This method is also a finite field method 
but now the total energy is expanded in a Taylor series in the electric field instead 
of the dipole moment. The dipole moment, polarizability and first hyperpolariz- 
ability are determined from the first, second, and third derivatives of the energy 
with respect to the electric field components. A numerical five point method is 
used to calculate these derivatives. For the SCF calculations this method is 
equivalent to the FF:/~ method, but for MP2 it is not. The methods yield 
different results because with the MP2 dipole moment calculation for FF :#  the 
perturbation is performed up to second-order in the dipole moment, while 
calculating FF:E  the MP2 energy is accurate up to second-order in the energy. 
Consequently, with FF:#  both single and double substituted wave functions are 
taken into account and with FF:E only the double substitutions. We will show 
that single substitutions give the main electron correlation contribution to the 
dipole moment so the results of both methods can differ considerably. 

It is important to realize that the MP2 calculations are performed using the 
converged molecular orbitals from the Hartree-Fock calculation in the presence 
of the field. The effective change in potential caused by electron correlation 
interactions is not taken into account by using a self-consistent field procedure. 

2. 7 Basis sets and geometries 

For the HF and MP2 calculations we employed the Pople [36-39] basis sets, 
STO-3G, 4-31G, 6-31G**, and the basis sets of Dunning and Hay [40], TZV, 
TZV** (TZV = triple zeta valence). The double stars indicate the addition of 
polarization functions, i.e. an atomic GTO p-functions for the hydrogen atoms 
and an atomic GTO d-functions for the other atoms [41]. 

All HFS calculations have been performed using Cartesian STO basis sets. 
See Table 1 for the exponents used. These basis functions, apart from the 
polarization functions, have been obtained from a least-squares fit to numerical 
atomic orbitals from a Herman-Skillman [42] type calculation. The polarization 
functions were chosen according to the optimizations of Cade and Huo [43], 
McLean and Yoshimine [44], and Bicerano et al. [45]. 

The geometrical parameters of the molecules have been optimized by using 
an HF calculation with a 4-31G basis set (see Table 2). Molecular geometries 
obtained in this way generally appear to be in good agreement with experiments 
and extending the basis sets does not significantly improve the geometry [39, 46]. 
Since the calculated geometry of the water molecule does not agree so well with 
experiment we used the experimental geometry [47] for our calculations. For the 
electron density study employed here the molecular geometry is not very 
important. The same fixed geometry has been used for all calculations described 
here. 
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Table 1. Cartesian STO basis sets (STO-type, exponent) used in the Har t ree-Fock-Sla te r  calcula- 
tions. When using a frozen core the ls functions are replaced by a different effective nuclear charge 

Basis set C H N O 

SZV Is 5.30 ls 0.85 Is 6.38 ls 7.36 
2s 1.56 2s 1.86 2s 2.15 
2p 1.22 2/, 1.47 2p 1.72 

DZV ls 7.68 ls 0.76 ls 5.90 ls 9.80 
ls 5.00 ls 1.28 Is 8.74 is 6.80 
2s 1.24 2s 2.38 2s 2.82 
2s 1.98 2s 1.45 2s 1.70 
2p 0.96 2p 1.12 2p 1.30 
2p 2.20 2p 2.58 2p 3.06 

TZV Is 7.68 Is 1.58 ls 5.90 ls 9.80 
ls 5.00 ls 0.92 ls 8.74 ls 6.80 
2s 1.28 ls 0.69 2s 1.50 2s 1.72 
2s 2.10 2s 2.50 2s 2.88 
2s 4.60 2s 5.15 2s 7.58 
2p 0.82 2p 1.00 2p 1.12 
2p 1.48 2p 1.88 2p 2.08 
2p 2.94 2p 3.68 2p 4.08 

TZD = T Z V +  3d 2.50 2p 1.00 3d 2.00 3d 2.00 
TZDE = T Z V +  3d 2.50 2p 1.00 3d 2.00 

4f  2.00 2p 2.00 4f  2.50 
3d 2.00 

p-functions include: Px,y,z  

d-functions include: dz 2 ,x2_  y2 xy,xz,y z 

f-functions include f z 3,xz z,yz 2,xyz,z(x 2 - y z),x(x 2 - 3 y 2),y( 3x 2 _),2) 

Table 2. Molecular geometries, HF(4-31G) optimization 

Molecule Symmetry Bond length (A) Bond angle (degr.) 

FormaldehydO C2~ C-O = 1.2060 O - C - H  = 121.82 
C-H = 1.0809 

Water 2'5 C2~ O-H = 0.9572 H - O - H  = 104.52 
Nitrate 3 D3h N - O  = 1.2563 
Urea 3 C2~ C-O = 1.2268 O - C - N  = 122.16 

C N  = 1.3574 C-N-H1 = 117.49 
C-H1 = 0.9898 C - N - H 2  = 123.78 
C-H2 = 0.9886 

I C(0, 0, 0), O(0, 0 , -  1.2060), H(0, +0.9184, 0.5699) 
2 O(0, 0, 0), H(0, +0.7570, 0.5859) 
3 N(0, 0, 0), O1(0, 0, 1.2558), 02(0, + 1.0876, -0.6279) 
4 C(0, 0, 0), O(0, 0, 1.2268), N(0, + 1.1491, -0.7225), HI(0, +2.0033, -0.2225), H2(0, + 1.1771, 
- 1.7107) 
5 Experimental geometry [47]. The calculated bond angle HF(4-31G) was too large (111.14°). 
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3 Results and discussion 

3.1 Comparing electron density distributions 

Graphs of the electron density distributions calculated with the different methods 
will be discussed in this section. The molecules we investigated are all planar and 
only the molecular plane will be considered. To obtain a good overall picture of 
the density distributions, integrated atomic charges are needed (see Sect. 3.2). 
The analyses performed in this section are mostly qualitative. The density plots 
have been calculated using the HF, MP2, and HFS methods. 

Boyd and Wang [15, 16] compared density distributions obtained from MP2 
and CI (configuration interaction) calculations. Figure 1 is a reprint of their 
figure of the correlation difference density A~Mp2(r ) and A~ci(r ) of the nitrogen 
molecule. In both the MP2 and CI calculation only single and double substitu- 
tions are taken into account. Meyer et al. [48] showed for CI calculated density 
distributions that triple and quadruple excitations are only of minor importance. 
The excellent agreement between the MP2 and CI calculated densities is clearly 
seen and since the latter method is computationally much more demanding, MP2 
density calculations provide a good alternative for studying electron correlation 
effects. 

Before we discuss the different density distribution calculations, some other 
aspects are considered. In Fig. 2 different plots of the water molecule are shown 
to investigate the influence of a frozen ls core in the HFS calculations, the 
influence of extending the basis set and the agreement between atomic HF and 
HFS calculations. Freezing the ls core on the oxygen atom (Fig. 2b) has only a 
slight effect on the density distribution (notice the difference in contour intervals) 
although, because of its dipolar character, it might have some influence on the 
total dipole moment. Figures 2c (HF) and 2d (HFS) display the effects of using 
extended basis sets (f-functions on the oxygen atom and d-functions on the 
hydrogen atoms) compared to the 6-31G** (HF) and TZD (HFS) basis sets. The 
extra functions in the basis set are more important for the HFS than for the HF 
calculations, but in both cases the effects of an extension on the basis set is small 
compared with the deformation density A~HF(r). Note the small contour inter- 
vals in Fig. 2c,d. There are two ways to compare the HF and HFS methods: 

II  t '  

1- - (  

b 

Fig, L Correlation difference density plots of the nitrogen molecnle N 2. Comparison between MP2 
(a: AQMP2(r)) and CI (b: AQci(r)) electron density calcuiations. (Aecl(r) is defined similar to 
A~oMp2(r)). Positive contours are drawn as solid lines and negative contours as dashed lines. The 
contour levels are: 0, ___0.0001, +0.0002, +0.0005, +0.001, +0.002, ___0.005, ±0.01, -t-0.02, +__0.05, 
and _+0.1 a.u. Reprint from Wang and Boyd [15] 
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Fig. 2. Electron density plots of the water molecule plotted in the molecular plane. Positive contours 
are drawn as solid lines (electron excess), zero contours are dash-dotted and negative contours are 
dotted (electron deficiency). Contour interval 0.10e/A 3 for (a, e, f) and 0.02e//]l 3 for (b,c,  d). a 
Deformation density distribution AQIfF(r ). b Influence of a frozen ls core in the HFS calculation: 
AeHFs(All-electron) --A~HFs(frozen ls core oxygen atom), e Influence extended basis (f-functions 
on oxygen atom, d-functions on hydrogen atoms) for HF calcualtion: AQRF(6-31G**+ (f /d)) - 
AQnF(6-31G**); d Influence extended basis (f-functions on oxygen atom, d-functions on hydrogen 
atoms) for HFS calculation: AQttFs(TZD + ( f / d ) ) -  AQHFs(TZD ). e Difference between HFS and 
HF calculation: Aot~Fs(r) -- A~nF(r ). f Difference between HFS and HF calculation QHFS(r) -- QHF(r) 

subtracting the deformation density distributions AQHFs(r ) --AQHF(r) (Fig. 2e) 
and subtracting the total densities Q H F S ( r ) -  QHF(r)  (Fig. 2 0. The differences, 
caused by the difference in the atomic calculations, are largest close to the nuclei. 
Compared with the property we are investigating, dE(r )  (Fig. 2a), the differences 
in methods of  comparison are not insignificant. The advantage of a deformation 
density is that basis set errors tend to decrease using the same atomic basis set 
for the calculation of  the molecule as for the free atoms. In the following figures 
the HF  and HFS densities are compared using the deformation density distribu- 
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tions although we realize that some molecular properties are determined by the 
total densities. 

We will now compare electron density distributions calculated with the 
dif ferent  quantum chemical methods. The Figs. 3, 4, 5, and 6 show AQHF(a), 
Z]0HFs(b), AOMP2(C ) and  A ~ H F S -  AoHv(d) for formaldehyde, water, the nitrate 
ion, and the urea molecule, respectively. The basis sets used are the 6-31G** for 
HF and TZD for HFS. These basis sets are approximately of the same quality. 
To obtain a good view of the whole range of the molecule logarithmic contour 
intervals have been used. The overall agreement between the HF and HFS 
deformation densities is good. The only appreciable difference occurs at the core 
regions of the nitrogen atoms of the urea. The figures d show that the density 
around the hydrogen atoms is more extended for the HFS calculation than for 
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Fig. 3. Electron density plots of the 
formaldehyde molecule. Basis set HF 
calculation: 6-31G**, HFS calculation: 
TZD. Positive contours are drawn as 
solid lines, zero contours are dash-dotted 
and negative contours are dotted. 
Contour intervals (positive and 
negative) increase by successive factors 
of 2 starting from 0.02 e/~ 3. a HF 
deformation density AQHF(r); b HFS 
deformation density AOHFS(r); C MP2 
contribution to the density AOMpz(r); d 
Difference between HFS and HF 
density, A 0HVS (r) -- A¢HF (r) 
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Fig. 4. Electron density plots of the 
water molecule. Basis set, contours and 
configuration of the plots as in Fig. 3 
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HF. This seems to hold for all molecules. The doubly bonded oxygen atoms 
show the same pattern in all molecules. The region of electron deficiency in the 
bond of  this atom is deeper in AQHF than in AQHFS, while the electron excess in 
the lone pair region is larger. All features appear to be slightly less pronounced 
for the HFS than for the HF calculations. When we compare the HFS and HF 
calculated electron densities with the effect of electron correlation, as shown by 
the figures c, we notice that the HFS method seems to take correlation into 
account, albeit in a somewhat exaggerated way. This confirms the belief that 
H FS /DF T accounts to some degree for correlation (see Cook and Karplus [1] 
and references therein). Qualitatively A~Mm and AQHFS - -  AQH F behave about the 
same for all four molecules. Both density maps (c and d) show negative contours 
in the bonding areas and positive contours close to the nuclei. At the position of 
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the characteristic hole in the deformation density of the oxygen atom, both maps 
show positive features. Because of the different basis sets used in the HF and 
HFS calculations the figures c and d cannot be compared quantitatively, but the 
common features are striking. When comparing the two sets of diagrams it 
should be remembered that electron correlation effects are also included in the 
atomic HFS calculations. This last effect is not present when we compare total 
densities (0HFS- 0HF) as in Fig. 2f. Comparing this kind of figure with AOMP2 , 

results in a better agreement for the hydrogen atoms both in and behind the 
bonds. At the position of the other atoms the agreement is slightly decreased. 

From these maps we conclude that the agreement between HF and HFS 
density distributions is good and that the influence of MP2 contributions is small 
even compared with the difference between the HF and HFS densities. These 
figures give obviously only information about the density in molecular plane. In 
the next section quantitative analysis of atomic moments will be discussed. 

3.2 Comparing atomic charges and dipole moments 

In Tables 3, 4, 5, and 6 atomic charges are listed calculated with the Mulliken, 
L6wdin, Hirshfeld, and Bader charge partitioning methods using both HF, MP2, 
and HFS calculations. In the Hirshfeld partitioning method free spherical atomic 
densities Q~t°m(r) are used in the weight function. For partitioning the HF and 
MP2 densities the same set of atomic densities has been used; i.e. those derived 
from atomic Hartree-Fock calculations. This has the advantage that the changes 
we get in atomic charges can only be caused by changes in the molecular electron 
density distribution. Atomic charges resulting from MP2 calculations will also be 
discussed in another paper [49]. 

Table 3. Atomic charges (in lel) of formaldehyde calculated with the HF, MP2, and HFS methods 

Method/basis set Mulliken L6wdin Hirshfeld Bader 

HF/STO-3G C 0.069 0.077 0.117 1.043 
O -0.189 -0.113 -0.142 -0.937 
H 0.060 0.018 0.013 -0.053 

HF/4-31G C 0.176 0.123 0.163 0.960 
O -0.485 - 0.282 - 0.261 -0.997 
H 0.155 0.080 0.049 0.018 

HF/6-31G** C 0.246 0.081 0.168 1.3341 
O - 0.447 - 0.259 - 0.266 - 1.272 
H 0.101 0.089 0.049 -0.031 

MP2/6-31 G* * C 0.167 - 0.002 0.101 1.1322 
O -0.359 -0.169 -0.185 - 1.110 
H 0.096 0.085 0.042 - 0.011 

HFS/TZD C 0.823 0.098 0.8523 
O -0.451 -0.186 --0.945 
H - 0.186 0.044 0.046 

1 Basis set 6-311G + (2d/pd): C: 1.228, O: -1.219, H: -0.004. 
2 Basis set 6-311G + (2d/pd): C: 1.025, O: --1.050, H: 0.012. 
3 Basis set TZV + (2d/pd): C: 0.915, O: --0.952, H: 0.018. 
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Table 4. Atomic charges (in lel) of water calculated with the HF, MP2 and HFS, methods 

Method/basis set Mulliken L6wdin Hirshfeld Bader 

HF/STO-3G O - 0.366 -0.253 - 0.236 - 0.821 
H 0.183 0.127 0.118 0.411 

HF/4-31G O -0.785 - 0.569 - 0.332 - 0.998 
H 0.393 0.284 0.166 0.499 

HF/6-31G** O - 0.674 - 0.454 -0.328 - 1.226 
H 0.337 0.227 0.164 0.613 

MP2/6 - 31G** O -0.647 -0.438 -0.307 - 1.162 
H 0.323 0.219 0.153 0.581 

HFS/TZD O - 0.676 - 0.306 - 1.104 
H 0.338 0.152 0.552 

Table 5. Atomic charges (in [el) of the nitrate ion calculated with the HF, MP2, and HFS methods 

Method/basis set Mulliken L6wdin Hirshfeld Bader 

HF/STO-3G N 0.211 0.320 0.286 0.618 
O -0.404 - 0.440 -0.429 - 0.539 

HF/4-31G N 0.617 0.496 0.325 0.730 
O - 0.539 - 0.499 -0.442 - 0.577 

HF/6-31G** N 0.875 0.456 0.320 0.960 
O - 0.625 - 0.486 - 0.440 - 0.653 

MP2/6-31G** N 0.724 0.307 0.203 0.778 
O -0.575 -0.436 -0.401 -0.593 

HFS/TZD N 0.592 0.172 0.842 
O -0.531 -0.391 -0.614 

We first consider the basis set dependence of  H F  calculated atomic charges. 
There is a s trong basis set dependence for bo th  the Mull iken,  L6wdin  and Bader 
a tomic charges. Fo r  the first two this basis set dependence is explicitly present  in 
the par t i t ioning method itself, while for Bader 's  method  small changes in the 
posi t ion of  the sharp boundar ies  of  the a toms can result in considerable changes 
in the various moments .  The atomic charges according to Hirshfeld show a much  
more consistent  behavior.  The values calculated with a 6-31G** basis set hardly 
differ f rom the 4-31G values. This makes the Hirshfeld atomic charges better  
suited for compar ing  the outcome of  different q u a n t u m  chemical calculat ions 
than  the other par t i t ioning methods.  Experience shows that  for Bader a tomic 
charges a 6-31G** basis set does give consistent  results; increasing the basis set 
does not  cause large changes (see the bo t tom of  Table  3 for calculations with 
larger basis sets and see also [25, 26]). 

The magni tude  of  the atomic charges according to Bader are clearly much 
larger than  all others, while Hirshfeld 's  method  usually yields the smallest values. 
For  compar ing  different calculat ions or molecules this is no t  impor tant ,  but  in 
model l ing molecules it does mat ter  which set of  charges is used. Davidson  and  
Chakravor ty  [24] compared  Mull iken,  L6wdin,  and  Hirshfeld atomic charges 



406 G.J .M.  Velders and D. Feil 

Table 6. Atomic charges (in lel) of urea calculated with the HF, MP2, and HFS methods 

Method/basis set Mulliken L6wdin Hirshfeld Bader 

HF/STO-3G C 0.428 0.312 0.290 2.158 
O -0.341 -0.311 -0.317 -1.101 
N -0.461 --0.283 -0.212 -- 1.211 
H1 0.216 0.147 0.116 0.353 
H2 0.201 0.135 0.110 0.329 

HF/4-31G C 1.028 0.406 0.272 1.749 
O -0.676 -0.467 -0.420 - 1.130 
N -0.931 -0.460 -0.178 - 1.136 
H1 0.390 0.254 0.130 0.430 
H2 0.364 0.236 0.122 0.396 

HF/6-31G** C 0.940 0.301 0.255 2.507 
O - 0.657 - 0.438 - 0.419 - 1.415 
N -0.772 -0.334 -0.172 - 1.472 
H1 0.328 0.211 0.132 0.482 
H2 0.302 0.191 0.122 0.444 

MP2/6-31G** C 0.810 0.195 0.175 2.188 
O - 0.567 - 0.349 - 0.343 - 1.270 
N -0.735 -0.320 -0.166 - 1.356 
H1 0.320 0.209 0.130 0.468 
H2 0.294 0.189 0.120 0.429 

HFS/TZD C 0.771 0.183 1.590 
O - 0.602 - 0.318 - 1.061 
N -0.106 -0.200 - 1.090 
H 1 0.021 0.139 0.429 
H2 0.001 0.128 0.397 

and  dipole moments  for a large number  of molecules and found  similar results 
for the basis set dependence as reported here. 

We will now compare  atomic charges calculated with the H F S  method  with 
H F  calculated values. Compar ing  the H F S  calculated charges with the HF/6-  
31G** values there does no t  appear  to be a un i fo rm pattern.  The differences 
between H F S  and H F  charges are of the same order of magni tude ,  or larger than  
the differences caused by changes in the basis sets. The best agreement  occurs 
when the Hirshfeld par t i t ioning method  is applied. Par t  of  this may be caused by 
the fact that  these charges are smaller in magni tude  than  the others. The most  
consistent  behavior  can be seen for the Hirshfeld charges of the hydrogen atoms 
which are almost  equal for bo th  methods.  

The effect of  electron correlat ion on atomic charges will now be considered. 
For  all the atoms in the different molecules and all par t i t ioning methods  we used, 
the MP2 method  yields lower atomic charges than  the H F  method;  electron 
correlat ion reduces the atomic charges. The MP2 correlat ion on the density plots 
was seen to be small compared with the difference between the H F S  and  H F  
densities, bu t  the MP2 correction is seen to affect the atomic charges consider- 
ably. There is an excellent agreement  for all molecules between the MP2 and  
H F S  atomic charges using Hirshfeld's  method.  Wi th  the Bader par t i t ioning 
method  not  such a good agreement  is found,  a l though the MP2 charges are 
always lying between the H F  and  H F S  calculated values. Larger basis sets 
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(bottom of Table 3) yield a slightly better agreement between the MP2 and HFS 
calculated charges. This again confirms the suggestion that the HFS method 
yields electron densities beyond Hartree-Fock quality. Because a completely 
different type of basis set is used in the HF (and MP2) method and in the HFS 
method, a comparison of Mulliken atomic charges is hardly relevant. As has 
been emphasized before the method of Bader is sensitive to small changes in the 
density caused by different methods or basis sets. This phenomenon is probably 
responsible for the larger differences between both methods than found using 
Hirshfeld's partitioning method. 

For quantifying electron density distributions the higher moments should be 
considered as well. Tables 7 and 8 list the local atomic dipole moments using the 

Table 7. Atomic dipole moments  (in a.u.) using Hirshfeld stockholder partitioning method. The 
central bond of  the molecules (C=O, N-O1)  is directed along the z-axis, while the molecules are lying 
in the y-z plane. The atoms marked with a (') are located on the negative y-axis (see Table 2). The 
basis sets used are HF,  MP2: 6-31"*, HFS: TZD 

H F  MP2 HFS 

#yi #zi Pyi ,u~i ltyi ,uzi 

Formaldehyde C 0.000 -0 .097  0.000 - 0 . 0 7 6  0.000 -0 .071  
O 0.000 -0 .148  0.000 -0 .138  0.000 -0 .075  
H 0.093 - 0 . 0 7 0  0.091 -0 .067  0.149 - 0 . 0 9 6  
H'  --0.093 --0.070 --0.091 -0 .067  -0 .149  - 0 . 0 9 6  

/~ 0.000 - 0 . 3 8 4  0.000 - 0 . 3 4 7  0.000 -0 .338  
#~mol 0.000 -- 1,095 0.00 --0.858 0.000 --0.8542 

Water O 0.000 0.202 0.000 0.206 0.000 0.069 
H 0.175 0.147 0.168 0.14! 0.219 0.150 
H '  - 0 . 175  0.147 -0 .168  0.141 - 0 . 2 1 9  0.150 

#i 0.000 0.497 0.000 0.487 0.000 0.369 
#tool 0.000 0.859 0.000 0.826 0.000 0.7073 

Nitrate N 0.000 0.000 0.000 0.000 0.000 0.000 
O1 0.000 - 0 . 2 5 6  0.000 -0 .242  0.000 -0 .231  
0 2  -0 .221  0.128 -0 .209  0.121 -0 .200  0.116 
02 '  0.221 0.128 0.209 0.121 0.200 0.116 

/~i 0.000 0.000 0.000 0.000 0.000 0.000 
,//mol 0.000 0.000 0.000 0.000 0.000 0.000 

Urea C 0.000 -0 .088  0.000 - 0 . 0 8 7  0.000 - 0 . 0 8 4  
O 0.000 -0 .205  0.000 -0 .187  0.000 -0 .138  
N --0.014 0.008 -0 .005  0.001 --0.009 0.002 
N '  0.014 0.008 0.005 0.001 0.009 0.002 
H1 0.187 0.097 0.181 0.091 0.232 0.100 
H I '  - 0 . 1 8 7  0.097 -0 .181  0.091 -0 .232  0.100 
H2 0.011 -0 .203  0.011 -0 .195  0.022 -0 .246  
H2'  --0.011 -0 .203  --0.011 -0 .195  - 0 . 0 2 2  - 0 . 2 4 6  

#i 0.000 -0 .490  0.000 -0 .479  0.000 -0 .509  
firnol 0.000 -- 1 . 8 8 8  0.000 -- 1.703 0.000 -- 1.6444 

1 Dipole moment  of  the molecule. 
2 Experimental values - 0 . 917  a.u. [50] and - 0 . 9 2 0  a.u. [51]. 
3 Experimental values 0.763 a.u. [51], 0.7296 a.u. [52], 0.728 a.u. [53], 0.7268 a.u. [54]. 
4 Experimental value - 1.51 a.u. [55]. 
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Table 8. Atomic dipole moments (in a.u.) using the partitioning method of Bader. For specifications 
of the calculations and experimental values see Table 7 

HF MP2 HFS 
#yi #zi #yi #~i #yi #zi 

Formaldehyde C 0.000 0.877 0.000 0.875 0.000 0.858 
O 0.000 0.739 0.000 0.620 0.000 0.320 
H -0.092 0.060 -0.109 0.076 -0.139 0.110 
H' 0.092 0.060 0.109 0.076 0.139 0.110 

#i 0.000 1.736 0.000 1.646 0.000 1.399 
#mol 0.000 -- 1,095 0.000 --0.858 0.000 --0.854 

Water O 0.000 --0,309 0.000 -0.255 0.000 --0.286 
H -0.123 -0,095 -0.131 -0.103 -0.131 -0.114 
H' 0.123 -0,095 0.131 -0.103 0.131 -0.114 

#i 0.000 -0.498 0.000 -0.460 0.000 --0.515 
#rnol 0.000 0.859 0.000 0.826 0.000 0.707 

Nitrate N 0.000 0.000 0.000 0.000 0.000 0.000 
O1 0.000 -0.374 0.000 -0,388 0.000 -0.438 
02 -0.324 0.187 -0.336 0.194 -0.379 0.219 
02' 0.324 0.187 0.336 0.194 0.379 0.219 

#i 0.000 0.000 0.000 0.000 0.000 0.000 
#tool 0.000 0,000 0.000 0.000 0.000 0.000 

Urea C 0.000 0.106 0.000 0.133 0.000 0.199 
O 0.000 0.657 0.000 0.562 0.000 0.192 
N 0.226 -0.152 0.134 -0.094 0.000 0.109 
N' -0.226 -0.152 -0.134 -0.094 0.000 0.109 
H1 -0.143 -0.078 -0.148 -0.081 -0.155 -0.083 
HI' 0.143 -0.078 0.148 -0.081 0.155 -0.083 
H2 -0.005 0.171 -0.006 0.178 -0.009 0.190 
H2' 0.005 0.171 0.006 0.178 0.009 0.190 
'~, ,u i 0.000 0.646 0.000 0.700 0.000 0.823 
#tool 0.000 - 1.888 0.000 -- 1.703 0.000 - 1.644 

Hirshfeld and Bader par t i t ioning methods.  For  most  a toms the agreement  
between the H F  and HFS  calculations is reasonable,  while the MP2 correction 
on the atomic dipole moments  is small. This holds for both  par t i t ioning methods  
a l though they yield quite different values. The local dipole moments  calculated 
with Bader 's  method  are large because the nuclei are in general no t  located in the 
center of the atomic basins. Charge transfer yields for Hirshfeld 's  method  the 
most  impor t an t  cont r ibut ions  to the molecular  dipole moment ,  while the contri-  
bu t ion  of the atomic dipole moments  has the same direction but  is of  less 
importance.  Bader 's  par t i t ioning method shows large charge transfer between the 
atoms. The resulting molecular  dipole momen t s  are reduced by the oppositely 
directed atomic dipole moments .  

The H F S  calculated molecular  dipole moments  are closer to the experimental  
values than  the ones calculated with the H F  method.  For  formaldehyde MP2 
yields a dipole m o m e n t  in excellent agreement  with experiment  (see also Sect. 
3.4) bu t  for water the MP2 cont r ibu t ion  is small (#~1,2 = 0.8264 a.u.). Using a 
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TZDF basis set Krijn and Feil [56] calculated an HFS dipole moment of 
0.721 a.u. even closer to the experimental values. 

3.3 Critical points 

In this section we compare the electron density distributions by means of the 
properties at the critical points in the molecular bonds. Table 9 lists the electron 
density o(rc) and the Laplacian of the electron density V20(rc). The basis set 
dependence of rc and ~(rc) is not large and the HFS values are in reasonable 
agreement with the HF/6-31G** values. The agreement increases taking electron 
correlation effects into account, although the MP2 calculations yield almost the 
same results as the HF calculations. From the density plots, Figs. 3c t/m 6c, 
follows that Z1QMP2 is positive at the bond critical point in the C-O bond of 
formaldehyde and negative in all other bonds [26]. Although the MP2 contribu- 
tion to the density, AoMv2(r), was seen to be small in the density plots, Sect. 3.1, 
for the density in the bonds it is significant. For almost all calculated values of 
re, o(rc), and V20(rc) it can be seen that the MP2 values are lying between the HF 
and HFS values. This again shows that HFS as MP2 takes certain electron 

Table 9. Electron density 0 and Laplacian V2Q (in a.u.) at the bond critical point. The distance r c 
(in A) is from the critical point to the first atom mentioned under 'bond' 

HF MP2 HFS 
Molecule Bond S T O - 3 G  4 - 3 1 G  6-31G**  6 -31G**  TZD 

Formaldehyde C - O  r C 0 .392 0 .412 0.391 0.398 0 .429 

~o 0.341 0 .389 0.413 0 .415 0 .416 

V2~ 1.454 0.171 0.601 0 .312 - -0 .518  

C - H  r e 0.633 0 .682 0 .675 0 .682 0.708 

0 .265 0 .272 0.305 0.301 0 .279 

V20 - - 0 . 6 6 2  - 0 . 8 4 6  - -  1.249 - -  1.189 - 0 . 9 7 9  

Water O i l  rc 0 .729 0.743 0.771 0 .765 0 .748 

0 0 .379 0 .347 0 .377 0.373 0.348 

V20 - 2 . 5 7 9  - - 1 . 6 5 0  - 2 . 2 8 5  - 2 . 1 1 5  - -1 .878  

Nitrate N O  r c 0.636 0 .637 0 .626 0.623 0 .606 

Q 0.428 0 .417 0 .477 0 .467 0 .444 

V2Q - 0 . 8 2 3  - 0 . 4 0 2  - -  1.006 - -0 .808  - 0 . 6 4 7  

Urea C-O r c 0.407 0.435 0 .402 0 .410 0 .450 

0 0 .356 0 .396 0.415 0 .415 0.408 

V2~ 0.421 - - 0 . 7 8 6  - 0 . 2 0 0  - 0 . 3 9 4  - - 0 . 8 8 0  

C - N  r c 0 .450 0.533 0 .450 0.471 0 .554 

Q 0.281 0 .308 0.333 0.333 0 .320 

V20 - 0 . 0 6 9  - 0 . 9 7 0  - 0 . 9 7 8  - - 1 . 1 1 0  - 0 . 8 8 9  

N - H 1  r c 0.699 0.741 0 .759 0 .756 0 .736 

0 0.341 0 .332 0 .362 0 .357 0 .339 

V20 - 1.599 - 1.592 - 2 . 0 2 6  - 1.941 - -  1.595 

N H 2  r c 0.688 0 .732 0 .750 0 .747 0.731 

Q 0.341 0.333 0 .364 0 .359 0 .339 

V2~ --  1.505 - -  1.575 - 2 . 0 1 3  - -  1.927 - 1.552 
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Fig. 7. Electron density ~ (a), gradient of 0 (b), and Laplacian V2~ (c) along the C=O bond of 
formaldehyde calculated with HF/6-31g**, MP2/6-31g**, and HFS/TZD. The carbon atom is 
located at O. The critical point in this bond is located at 0.41 

correlation effects into account. The Laplacian V20(rc) depends quite strongly on 
the basis set used and sometimes even positive values were found, characteristic 
for closed-shell and ionic interactions. The bonds in these molecules should 
correspond to bonds with shared interactions (V20 < 0), but basis set inadequa- 
cies apparently strongly influence the Laplacian. The Laplacian calculated with 
the HFS method is for all bonds negative as expected. 

Figure 7 shows the sensitivity of the Laplacian for small changes in Q(r) of 
the C=O bond of formaldehyde. Close to the critical point (~0.41 ~ from the 
cabon atom) the graphs of V20, calculated with the HF, MP2, and HFS methods, 
almost coincide and the sign of W0(rc) depends on very small changes in the 
position of the critical point. Closer investigation of the different components of 
Q (the curvatures) shows that, at the critical point, the largest variations occur in 
the positive curvature, which is directed along the C=O bond. Since the density 
in this direction also determines the position of the critical point in the bond, 
small variations in 0 can influence the position of the critical point and the 
magnitude of the Laplacian at this point. Although this behavior is not seen in 
all bonds and the Laplacian of 0 is negative in a large part of the C=O bond of 
formaldehyde, we must be cautious with interpreting V20 at some specific point, 
as for example the (3, - 1 )  critical point in the bond. Bader [25] classifies the 
C--O bond in formaldehyde as intermediate, since it doesn't really belong to one 
of the extreme cases, i.e. shared and closed-shell interactions. 

3.4 (Hyper)polarizability of formaldehyde 

The dipole moment ~, static dipole polarizability c~ and static first dipole 
hyperpolarizability fi, have been calculated for formaldehyde and compared with 
experiments. The geometry used is in excellent agreement with the experimental 
geometry [57] which makes a direct comparison possible. For the calculations the 
sum over states (SOS) method and two finite field (FF) methods (see Sect. 2.6) 
have been used. One is based on the numerical differentiation of the dipole 
moment FF:  # (with respect to the electric field) while for the other the total 
energy is differentiated FF:E .  For the HF calculation both FF methods should 
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yield the same values. For MP2 calculations both methods can yield different 
results, since the terms contributing to the dipole moment are different from 
those contributing to the energy. 

From Tables 10, 11, and 12 can be seen that both FF  methods indeed yield 
the same results for HF. The small differences for e and /~ are caused by 
inaccuracies in the numerical differentiation of the dipole moment and energy 
(Ae ~< 0.006 a.u., A/~ ~< 0.4 a.u.) The dipole moments, Tables 10 and 13, depend 
only slightly on the basis set, especially for the HFS method. Inclusion of 
polarization functions, contracted or diffuse, cause minor changes to the dipole 
moment. Incorporating electron correlation effects by MP2 is far more impor- 
tant. MP2 corrections cause a reduction of the HF dipole moments yielding 
values in excellent agreement with experiment. The HFS calculated dipole 
moments, Table 13, are lower than the MP2 values and also slightly lower than 
the experimental ones, but better than HF values. Considering the much larger 
computational effort needed for MP2 than for HFS the last method can be used 
as a powerful alternative. The d-polarization function gives a significant im- 
provement to/~i~vs but basis sets larger than DZD yield the same values so that 
the basis set limit of c~ has probably been reached. 

We now turn to the polarizability. Electron correlation does not seem to be 
important, in contrast with the results found the for dipole moment. The small 
4-31G basis set (HF) yields already a very good value for ~z, the polarizability 
along the molecular axis. Extending the basis with diffuse functions hardly 
changes this, but it does have a large effect on the other components of ~. Along 
the main axis of the molecule, polarization has its main origin in a redistribution 
of charge over the atoms, while in the direction perpendicular to the molecular 
plane only atomic polarization contributes. The basis sets are obviously much 
more flexible in the molecular plane than perpendicular to it. The electron 
correlation contribution to the dipole moment, calculated by MP2, appears to be 

Table 10. D i p o l e  m o m e n t  ( in a .u.)  o f  f o r m a l d e h y d e  ca l cu l a t ed  wi th  finite field m e t h o d s  b a s e d  o n  the  

d ipo le  m o m e n t  der iva t ive  F F : #  a n d  ene rgy  de r iva t ive  F F :  E 

H F  M P 2  

Basis  set F F :  # F F  : E F F  :/~ F F  : E 

S T O - 3 G  - -0 .593  

4 - 3 1 G  - -1 .188  

6 -31G**  - 1.095 

6 -31G**  + ex t l  1 - 1.127 

6 -31G**  + ext2 - 1.127 

6 -31G**  + ext3 - 1.139 

T Z V  - 1.207 

TZV**  + ex t l  - 1.136 

E x p e r i m e n t  

- 0 .593 - 0 .418 - -  0 .477 

- -  1.188 - -0 .923  - 0 . 9 3 4  

- 1.095 - -0 .858  - 0 . 8 7 0  

- 1.127 - 0 . 9 2 2  

- 1.127 - 0 . 9 2 2  

- -  0.9172, - -  9203 

Diffuse  p o l a r i z a t i o n  func t ions :  G T O ' s  wi th  the  fo l lowing  types  a n d  e x p o n e n t s  fo r  the  C,  O,  a n d  H 

a t o m s  ( C  a n d  O ) / ( H ) :  

- ex t l  = (~a = 0.2, ~a = 0.05)/(~p = 0.2, ~d = 0.05) 

- ext2 = ex t l  + (~d = 0.005)/(~a = 0.005) 

- ext3 = ex t l  + (fir = 0.1) / -  
2 Ref.  [50]. 

3 Ref.  [51]. 
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Table 11. Static dipole polarizability c~ (in a.u.) of formaldehyde calculated with the sum over states 
(SOS) method and with finite field methods using HF and MP2 calculations. The C--O bond is 
directed along the z-axis, while the molecule is lying in the y-z plane. For specifications of the 
functions see Table 10 

SOS ~xx gyy ~zz 

STO-3G 1.763 4.581 12.381 
4-31G 4.239 8.264 17.346 
6-31G** 6.596 9.969 16.770 
6-31G** + extl 11.266 12.829 18.073 
6-31G** + ext2 11.356 12.850 18.098 
TZV 5.435 8.903 18.482 
TZV** + extl 11.513 12.846 18.200 

FF:# FF:E 
HF C~xx O~yy O;zz O~xx O~yy O~zz 

STO-3G 2.444 5.730 10.231 2.444 5.730 10.232 
4-31G 5.181 11.209 18.232 5.181 11.208 18.232 
6-31G** 6.743 12.647 18.122 6.744 12.646 18.123 
6-31G** + extl 11.913 15.716 20.671 11.918 15.710 20.667 
6-31G** + ext2 12.044 15.740 20.705 12.040 15.735 20.701 
6-31G** + ext3 21.057 

MP2 

STO-3G 2.441 5.789 8.599 2.418 5.775 8.606 
4-31G 5.298 11.722 17.712 5.298 12.041 17.128 
6-31G** 6.745 13.015 18.170 6.733 13.246 17.651 
6-31G** + extl 12.442 17.341 21.459 
6-31G** + ext2 12.563 17.370 21.498 
Experiment I 12.4 18.6 18.6 
Experiment 2 12.95 18.63 18.63 

1 Ref. [59] and [601. 
2 Ref. [61]. 

a lmos t  independen t  o f  the electric field resul t ing in only m i n o r  effects on the 
polar izabi l i ty .  The largest  calculat ion,  MP2(6-31G**  + ext2), yields values for  
in excellent  agreement  with exper iments ,  with only the c~zz values being sl ightly 
too  large. Raeymaeke r s  et al. [58] ana lyzed  different ca lcula t ions  o f  e and  found  
tha t  a lmos t  all C~zz values were ca lcula ted  somewhat  larger  than  the exper imenta l  
values.  Our  ca lcula t ion  o f  eyy (in the molecu la r  plane,  pe rpend icu la r  to the 
molecu la r  axis) is closer to the exper iment  than  any o f  the o ther  ca lcula t ions ,  
which are all too  small .  The  SOS calcula t ions  yield quite good  results  for  C~xx and  
e= ,  wi th  only %y being clearly too  small.  The  H F S  calcula t ions  show a slight 
basis  set dependence  for  all componen t s  o f  e. Diffuse po la r i za t ion  funct ions  are  
no t  as i m p o r t a n t  as for  the H F  and M P 2  methods .  The  values are larger  than  for  
the H F  calcula t ion  bu t  in good  agreement  with exper iments ,  with only ezz being 
too  large. 

As  a last  po in t  we discuss the hyperpo la r izab i l i ty  o f  fo rmaldehyde .  W e  first 
discuss the ou tcome  o f  the H F  calcula t ions  and  then the improvemen t s  by  M P 2  
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Table 12. Static first dipole hyperpolarizability fl (in a.u.) of formaldehyde calculated with the (SOS) 
method and FF methods (HF and MP2). For specifications of the functions see Tables 10 and 11. 
~z = ~.~ +/~.~ + ~ =  

sos ~ ~,~ ~ Bz 

STO-3G 0.115 3 . 2 5 0  8 .082  11.447 
4-31G 2.192 12.905 31.924 47.021 
6-31G** 2.091 11.134 27.821 41.046 
6-31G** + ext 14.978 10.324 31.211 46.513 
6-31G** + ext2 5.087 10.432 31.191 46.710 
TZV 4.000 11.711 32.260 47.971 
TZV** + extl 5.047 10.128 30.982 46.157 

FF:# FF:E 
HF fl x~ ~ fly s z fl ~ 13 ~ fl  ~ , 13 y y ~ fl =~ 13 ~ 

STO-3G 0.8 2.2 2.3 5.3 0.6 2.5 2.2 5.3 
4-31G 3.0 19.5 19.5 42.0 2.8 19.8 19.2 41.8 
6-31G** 1.9 17.7 19.3 38.9 1.6 18.1 19.1 38.8 
6-31G** + extl 3.6 13.2 19.5 36.3 3.4 13.4 19.5 36.3 
6-31G** + ext2 3.6 13.3 19.3 36.2 3.4 13.5 19.3 26.2 
6-31G** + ext3 18.1 

MP2 

STO-3G 0.6 3.7 -2.5 1.8 0.1 4.0 - 1.3 2.8 
4-31G 2.1 26.5 7.4 36.0 1.2 27.5 6.1 34.8 
6-31G** 1.1 22.4 10.3 33.8 0.5 23.6 8.1 32.2 
6-31G** + extl 1.8 20.0 12.3 34.1 
6-31G** + ext2 1.6 20.1 12.0 33.7 

correct ions .  The SOS ca lcula t ion  o f  flzzz yields larger  values than  the F F  
calcula t ions ,  for  all basis  sets. The  agreement  between bo th  me thods  is closer for  
the components /3xxz and/3yy~. Because o f  the numer ica l  in tegra t ion  in the H F S  
m e t h o d  the d ipo le  m o m e n t  canno t  be de te rmined  with  greater  accuracy  than  
10 _4 a.u. m a k i n g  a rel iable  ca lcula t ion  o f /3  not  possible.  

The  stat ic  first d ipole  hyperpo la r i zab i l i ty  13 behaves  oppos i te  to c¢ with respect  
to e lect ron cor re la t ion  effects. As  for  the d ipole  momen t ,  e lect ron cor re la t ion  is 
i m p o r t a n t  for  all componen t s  of/3.  For/3z_,z it is more  i m p o r t a n t  to inco rpora t e  
e lect ron cor re la t ion  effects than  extending  the basis set, while for  /3yyz  M P 2  
correc t ions  and basis set extensions yield equal  bu t  oppos i te  cont r ibut ions .  I t  is 
r emarkab l e  tha t  for  the H F  calculations/3zz~ is the largest  c o m p o n e n t  while for  
M P 2  the largest  value is found  for  f l y y z .  The resul t  o f  this difference in behav ior  
o f  f l y y z  and  fl~zz with respect  to the basis set size and e lect ron cor re la t ion  effects 
is tha t  the exper imenta l  measurab le  quan t i ty  f l z  ( = / 3 x x ~  +/3yyz "Jr- /3zzz) is a lmos t  
the same for  all calculat ions.  

Our  ca lcula t ions  agree with one o f  the few repor ted  values [59] o f  /3 
ca lcula ted  with the H F - F F  me thod  /3x~z=4.10a .u . ,  / 3 y y ~ =  16.20a.u.  and  
/3~ = 20.19 a.u. 

F o r  all ca lcula t ions  we have seen tha t  M P 2  gives a lmos t  the same results for  
bo th  F F  methods :  the differences are  usual ly  small  c o m p a r e d  with  the to ta l  
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Table 13. Dipole moment p and static dipole polarizability c~ of formaldehyde calculated with the 
HFS method using the finite field approach FF:/t. For the orientation of the molecule see Table 11. 
All electron calculation, no frozen core 

Basis set #z exx eyy ezz 

SZV -0.164 5.462 17.758 16.835 
DZV - 1.010 7.206 13.783 19.710 
DZD -0.876 11.586 17.049 20.479 
TZD -0.875 11.271 17.124 22.257 
TZDF -0.880 11.955 17.845 22.680 
TZD + ext41 - 0.868 13.018 19.222 23.422 
TZD + ext5 - 0.889 13.975 20.039 24.353 
TZDF + ext5 - 0.875 13.996 19.859 24.193 

a Diffuse polarization functions: STO's with the following types 
atoms (C, O)/(H): 
- ext4 = (~a = 0.5)/(~p = 0.5) 
- ext5 = ext4 + (~a = 1.0)/(~p = 1.0) 

and exponents for the C, O, and H 

electron correlat ion effect. The difference between both  methods  has also been 
discussed in another  paper [49]. 

4 C o n c l u s i o n s  

F r o m  the analysis o f  the results obtained by the various quan tum chemical 
methods we conclude that: 

The electron density distributions obtained by the H F  and H F S  methods  are 
in good agreement while electron correlat ion effects are relatively small. The 
differences in the densities between the H F  and H F S  methods  shows electron 
correlation effects which are qualitatively in reasonable agreement  with MP2 
calculations. 

The Hirshfeld stockholder method has been found more  suited for compar-  
ing electron density distributions than the Mulliken, L6wdin,  and Bader parti- 
t ioning method,  since it is less basis set dependent.  Al though the MP2 
contr ibut ion to the density plots is relatively small it has a large effect on  a tomic 
charges resulting in an excellent agreement  with the H F S  charges. This clearly 
illustrates that  the H F S  method does include electron correlat ion effects and 
yields results o f  better quality than the H a r t r e e - F o c k  method.  

The electron densities at the bond  critical points calculated with the H F  
method  is in reasonable agreement with the H F S  calculations. The agreement  is 
slightly increased taking electron correlat ion (MP2) into account.  

The HFS  dipole momen t  o f  formaldehyde,  urea, and water agree better with 
experiment than the H F  value. Performing an MP2 calculation improves the H F  
values considerably yielding excellent agreement with experiments. 

All methods yield good  results for the polarizability o f  formaldehyde.  The 
influence o f  electron correlation is much  larger for the first hyperpolarizabil i ty 
than for the polarizability. Interesting is that  basis set and electron correlat ion 
effects on the different tensor components  of/~ tend to cancel each other  resulting 
in a consistent behavior  o f  the/?z with increasing basis set. 
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We conclude that the HF and HFS method give comparable electron density 
distributions but that agreement increases considerably using MP2. Since the last 
method is computationally much more demanding, the HFS method is a good 
alternative to perform calculations beyond Hartree-Fock. 
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